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Abstract

Lua is a scripting language created in 1993 in Brazil. We have reported in detail on the
birth of Lua and its evolution until 2007. Here, we chronicle the evolution of Lua since
then. In particular, we discuss in detail the evolution of global variables, the introduction
of integers, and the implementation of garbage collection and finalizers, including
deterministic finalization. We also comment on some landmark social developments in
the history of Lua.
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1. Introduction

Lua is a scripting language created in 1993 at PUC-Rio, the Pontifical Catholic
University of Rio de Janeiro in Brazil. In these 30+ years, Lua has been widely used in
all kinds of industrial applications and is one of the leading scripting languages in game
development [1, 2].

For HOPL III (the third ACM SIGPLAN conference on the history of programming
languages), we reported in detail on the birth of Lua and its evolution until 2007 [3].
In this paper, we chronicle the continued evolution of Lua since then. Our goal is to
record the main decisions made in each new version and the rationale behind them. We
also review them in hindsight. After a brief overview of Lua in §2, we give a summary
of the main changes in the evolution of the Lua 5 series in §3 and a detailed technical
discussion of some main features and their evolution in §4. We also comment on some
landmark social developments in the history of Lua in §5.

2. Overview of Lua

Lua is by design a lightweight embeddable scripting language. Our implementation
of Lua is a small C library that does not bloat host programs. (Like others [4, 5], we
consider code size important for a commodity library like Lua [6, 7].) Since quite early in
its evolution [3], Lua combines simple procedural syntax with powerful data description
constructs based on associative arrays and extensible semantics. Lua supports several
flavors of programming, such as procedural, object-oriented, functional, and data-driven
programming [8]. Moreover, Lua has a C API that allows it to be easily embedded into
host programs, thus allowing host programs to be scripted and Lua scripts to leverage
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Figure 1: Life span of each Lua series: the time between the first and the last releases within a series.
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Figure 2: Life span of Lua 5 releases. The spans overlap slightly because we make a last release of the
previous version shortly after a new version.

existing C libraries. This embeddability has significantly influenced the design of
Lua [9, 6].

Lua offers native collaborative multithreading in the form of coroutines [10]. Corou-
tines in Lua are asymmetric, stackfull, and first-class values [11]. Support for corou-
tines in the language is provided by library functions. We create a coroutine with
coroutine.create, which receives a function as the body for the new coroutine and re-
turns a (first-class) value representing the coroutine. The function coroutine.resume

receives a coroutine (plus optional arguments) and starts or resumes (continues) its
execution. Finally, the function coroutine.yield yields (suspends) the execution of
the coroutine calling it.

The complete definition of Lua is contained in its reference manual [12]. For a
detailed introduction to Lua, see the book Programming in Lua [13].

3. Summary of evolution

The first versions of Lua were short-lived (see Figure 1) because Lua was changing
fast, reflecting our improving understanding of the demands on a scripting language,
coming from users in both PUC-Rio and elsewhere. This initial evolution of Lua is
discussed at length in the HOPL paper [3]. Whenever context is needed here, we briefly
recall the parts of Lua’s past that are relevant to present discussion.

The Lua 5 series is by far the longest series of Lua releases; it reflects the path to
both maturity and stability of the language. The series started with Lua 5.0, released in
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April 2003, and is still current after 20+ years: Lua 5.4.7 was released in June 2024 and
work has begun on Lua 5.5.

Lua 5 brought modern features to Lua: collaborative multithreading via Lua corou-
tines [10], full lexical scoping, and metatables for simpler extensible semantics. Starting
with Lua 5, we adopted the liberal MIT license, which allowed Lua to be more widely
used. Lua 5.1 was released in February 2006 and lasted until Lua 5.1.5, released in
February 2012. It is the longest-lived version of Lua (see Figure 2); its life span was
further extended by the decision of LuaJIT to stay mostly on Lua 5.1 (LuaJIT is a
just-in-time compiler for Lua 5.1; see §5). Lua 5.0 and 5.1 are discussed in detail in
the HOPL paper [3]. In this section, we summarize the changes in later versions in the
Lua 5 series. Details on the evolution of some selected features appear in §4.

3.1. Numbering scheme

A word is in order about the scheme used for numbering versions of Lua, because
it superficially resembles the popular semantic versioning scheme but is not the same,
especially regarding compatibility. The releases of Lua are numbered x.y.z, where x is
the series, x.y is the version, and z is the release.

Different releases of the same version correspond to bug fixes; they have the same
reference manual, the same virtual machine, and are ABI compatible.

Different versions are really different. The API is likely to be a little different (but
with compatibility switches), and there is no ABI compatibility: applications that embed
Lua and C libraries for Lua must be recompiled. The virtual machine is also very likely
to be different in a new version: Lua programs that have been precompiled for one
version will not load in a different version.

Changes in the series signal major changes in the character of the language. They
happened in the early stages of the evolution of Lua. In particular, to support multiple
states, the move from Lua 3 to Lua 4 changed all functions in the API to receive a
Lua state as an extra parameter. From Lua 4 to Lua 5, most functions in the standard
libraries were moved into modules (tables): So, sin became math.sin, openfile
became io.open, tinsert became table.insert, etc.

3.2. Lua 5.2

Lua 5.2 was released in December 2011 and lasted until Lua 5.2.4, released in March
2015. Among its main new features were a new lexical scheme for globals, ephemeron
tables [14], a goto statement, finalizers for tables, and yieldable C calls (suspension of
coroutines while running a C function).

Globals. Since Lua 4.0, the global environment, which keeps all global variables, is
stored in an ordinary Lua table, called the table of globals. This greatly simplifies the
implementation of Lua and allows easy introspection using standard table mechanisms.
Along with full lexical scoping, Lua 5.0 introduced environment tables that can be
attached to Lua functions; the environment table of a Lua function is where global
names in the function are resolved at run time. Lua 5.2 brought a new lexical scheme
for globals: All variable names not declared as locals — that is, “global” names — are
now resolved explicitly as fields in a table named _ENV; that is, any free name foo
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is converted by the compiler to _ENV.foo. At the same time, each chunk (the unit
of compilation in Lua) is compiled in an environment with an implicit declaration of
a local variable _ENV. By initializing this variable with different values, we can have
different semantics for “global” variables. For instance, by initializing _ENV with a
predefined global table, we have conventional global variables. On the other hand,
making _ENV=nil is enough to block the access to any global variable. This mechanism
is both simpler and more modular than the previous one based on environment tables,
while keeping the flexibility. For a detailed discussion on globals, including more
examples of using _ENV, see §4.1.

Ephemeron tables. Lua 5.0 introduced support for weak tables. A weak table is a
table whose elements are weak references. Weak references are ignored by the garbage
collector: If the only references to an object are weak references, then the garbage
collector will collect that object. A weak table can have weak keys, weak values, or both.
A table with weak keys allows the collection of its keys, but prevents the collection of
its values. A table with weak values allows the collection of its values, but prevents the
collection of its keys. A table with both weak keys and weak values allows the collection
of both keys and values. In any case, whenever the key or the value is collected, the
whole pair is removed from the table.

Lua 5.2 introduced the notion of an ephemeron table [14], a special kind of table
with weak keys. In Lua 5.1, a strong value in a (reachable) table with weak keys is
always considered reachable, independently of the key. In a (reachable) ephemeron
table, a value is considered reachable only if its key is reachable. In particular, if the
only reference to a key comes through its value, and the only reference to the value
comes from the table itself, then the pair is removed and both the key and the value are
collected. For further discussion on ephemeron tables, see §4.5.

Goto statement. A continue statement and other loop controls were a recurring de-
mand from users. We were reluctant to add a continue statement because we thought
some variant of break could suffice (we still do). In Lua 5.2, we opted to introduce
a goto statement instead because it is more general. Once the focus of controversy
[15, 16], the proper use of goto statements has long since been well understood. Never-
theless, the semantics of goto in Lua are delicate, as in all other programming languages
that support it, because there are issues of which jumps are valid.

The syntax is goto label. The syntax for a label is ::label::. The usual syntax
label: would conflict with method calls; moreover, we thought that labels deserved a
rococo syntax to highlight their presence. A label is visible in the entire block where it
is defined, except inside nested functions. A goto may jump to any visible label as long
as it does not enter into the scope of a local variable. The last rule ensures that all local
variables are properly initialized. (C++ has a similar rule, that a goto cannot bypass a
variable initialization. In Lua, a variable without an explicit initialization is implicitly
initialized with nil, and so any variable declaration is a variable initialization.)

We decided to make a label a statement and took the opportunity to clarify the
role of the semicolon as an optional statement separator, not terminator. For this,
Lua 5.2 introduced the empty statement, which allows the programmer to separate
statements with semicolons, start a block with a semicolon, or write multiple semicolons
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in sequence. The empty statement also helps to resolve ambiguity in statements starting
with parentheses. As an example, consider the following fragment:

-- this is not an assignment followed by a function call!

a = b

(foo or goo)(a)

As the syntax in Lua is free format, that code is equivalent to this fragment:

a = b(foo or goo)(a)

We can fix this issue with an extra semicolon (an empty statement):

a = b

;(foo or goo)(a)

As the unusual feature in this example is the statement starting with a parentheses, it is
customary in Lua to place the semicolon there.

The introduction of goto in Lua 5.2 was met with virtually no reaction from the
community; there are still requests for a continue statement.

Finalizers for tables. Between Lua 4.0 and 5.2, Lua supported finalizers only for
userdata, so that C libraries could release resources during garbage collection. Lua 5.2
reintroduced support for finalizers for tables, another recurring demand from users.
Finalizers for tables were removed in Lua 4.0 due to performance issues: Before the
sweep phase, the collector had to traverse all objects looking for dead objects with
finalizers, so that they could be resurrected. In Lua 5.2, we added in the garbage
collector a list of objects marked for finalization, which solved the problem. For a
detailed discussion about finalizers in Lua, see §4.5.

Yieldable C calls. The implementation of coroutines in Lua 5.0 used a stackless inter-
preter, where calls in Lua do not imply calls in the underlying C code of the interpreter.
The call stack is reified in the Lua stack, so that the interpreter can have multiple call
stacks, one for each coroutine. However, calls to C functions still need the actual C stack.
So, coroutines in Lua 5.0 and 5.1 cannot yield while there is a C function in the call
stack (that is, while running a C function, including functions called by it).

In 2005, Mike Pall (the developer of LuaJIT) published a patch that allowed a
restricted form of yields in C calls [17]. In particular, the patch allowed yields from
inside metamethods and protected calls, the mechanism used by Lua for exception
handling. The patch came during the development of Lua 5.1, but as we were already
close to the release of Lua 5.1 alpha, it had to wait for the next version. Lua 5.2 came
with our first implementation of yieldable C calls, strongly based on Mike Pall’s patch.
In Lua 5.3 we refined that implementation with the concept of continuation functions.
See §4.3 for the details about the evolution of this feature.

3.3. Lua 5.3
Lua 5.3 was released in January 2015 and lasted until Lua 5.3.6, released in Septem-

ber 2020. It is the second longest-lived version of Lua to date (see Figure 2). Among its
main new features were the introduction of integers and bitwise operators, and a basic
UTF-8 library.
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Integers. The main new feature in Lua 5.3 was the introduction of integers and conse-
quently of bitwise operators and their corresponding metamethods. Until Lua 5.2, Lua
had only one kind of number, implemented by default as double-precision floating-point
numbers. Integers were not really needed because double-precision represents any
53-bit integer without loss. Indeed, Lua could boast support for such large integers
when 32-bit integers were the norm. With the rising ubiquity of 64-bit platforms, this
argument no longer applied. Indeed, by that time several C libraries were using 64-bit
integers for high-precision timestamps, handles, etc. Lua programs were having to jump
through hoops to use 64-bit integers. Therefore, we decided to introduce integers in
Lua as an explicit subtype of numbers. The introduction of integers may seem a minor
change, but it had far-reaching consequences. We discuss several aspects of this change
in §4.2.

Unicode. Lua is entirely agnostic about strings: It makes no assumptions about their
contents; they are just sequences of bytes. In particular, Lua does not know or care
whether a string contains text in some encoding. Accordingly, the standard string library
in Lua is based on bytes and naturally favors text manipulation of strings using single-
byte encodings, like ISO-8859-1. Fortunately, plain string matching works correctly
regardless of encodings. However, general pattern matching does not work in multi-byte
encodings, because it relies on characters, not bytes: Patterns need to identify classes of
characters like whitespace, punctuation, digits, letters, etc.

In response to the rising popularity of Unicode, Lua 5.3 also brought a library
for basic manipulation of UTF-8 strings, UTF-8 being the most popular encoding for
Unicode. Because Unicode tables are huge (much larger than the entire code of our Lua
implementation), we purposely restricted this library to the manipulation of characters
encoded in UTF-8; the library provides no support for Unicode other than the handling
of that encoding. Operations that need the meaning of a character, such as character
classification, are outside the scope of the library. In particular, it does not offer pattern
matching.

The utf8 library seems to have fulfilled its mission of granting access to individual
characters in UTF-8 strings. Third-party libraries for pattern matching on UTF-8 strings
exist now, but they are not small. Sophisticated pattern matching and parsing of UTF-8
and other encodings can be done elegantly in Lua using LPEG [18].

3.4. Lua 5.4

Lua 5.4 was released in June 2020. The current release as of January 2025 is
Lua 5.4.7, released in June 2024. Its main new features are a new generational mode for
garbage collection and to-be-closed variables for deterministic finalization (see §4.5).

Generational garbage collection. A generational collector assumes that most objects
die young. Consequently, its regular cycle traverses only young objects, those that were
created recently. While this behavior can reduce the time used by the collector, it can
also increase memory usage, since old dead objects may accumulate. To mitigate this
accumulation of garbage, the generational collector performs a full collection from time
to time. Lua 5.2 introduced generational garbage collection as an experimental feature,
but it did not work well: The strict binary classification of objects as old and young is
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too coarse. Generational garbage collection was removed in Lua 5.3 but it was reinstated
as the default in Lua 5.4 after refining the classification of objects according to age. For
a detailed discussion of garbage collection in Lua, see §4.4.

To-be-closed variables. To-be-closed variables are somewhat equivalent to finally

blocks in Java and Python. They provide the key mechanism of deterministic finalization
for Lua, which is discussed in detail in §4.5.

4. Details of evolution

In this section, we discuss in detail the evolution of the new features of Lua since
5.1 that involve more technical considerations. Namely, here we will discuss globals,
integers, yieldable C calls, garbage collection, and finalizers, which also includes
deterministic finalization.

4.1. Globals

Lua has always had global variables. They fit Lua’s origins as a configuration
language and they simplify the communication with the host program. Nevertheless, the
notion of global variable and its implementation in Lua has evolved significantly.

The global environment. Until Lua 4, we used private data structures inside the inter-
preter to represent the global environment, which stores all global variables. These data
structures have evolved from simple fixed-sized arrays to linked lists to binary trees
to hash tables. Their privacy made it easy for us to change their representation but it
also imposed a burden on Lua, because we wanted to support reflection for the global
environment. Lua 1 already provided basic reflective facilities, including a special
function for the traversal of the global environment that mimics the traversal of Lua
tables. This trend to make the global environment feel like a Lua table continued as
Lua evolved. Lua 2 added special functions to query and change global variables with
names computed at run time; with this change, a variable “name” could be any string.
Lua 3 introduced iterator functions for traversing Lua tables and the global environment.
Finally, following a suggestion by John Belmonte, Lua 4 used an ordinary Lua table
to store its global variables. This change has greatly simplified the implementation of
the interpreter and has also allowed us to remove all special functions that supported
reflection for the global environment; reflection now comes for free from the existing
features of regular tables. Moreover, extensible semantics can be easily applied to the
global environment without requiring special support since the table of globals, like
any Lua table, can be given a metatable. In particular, extensible semantics can be
used for tracking access to global variables, making the global environment read-only,
implementing sandboxing, etc. After explaining the new environment mechanism for
Lua 5.2, we will show how it supports these and other uses.
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Environment tables. Lua 5.0 introduced environment tables that can be attached to Lua
functions; these are the tables where global names in a function are resolved at run
time. Lua 5.1 extended environment tables to C functions, userdata, and threads, thus
effectively replacing the notion of global environment. Lua provided special functions
(setfenv and getfenv) to support these notions. However, these functions were at
once too powerful and not powerful enough. Indeed, any code that can call a function
can also change its environment; all that setfenv needs is a reference to the function.
That ease encourages all kinds of tricks that stymie modularity. At the same time,
the all-too-common case where a function wants to change its own environment was
difficult to code, because there is no standard way for a function to refer to itself.

A lexical scheme. The lexical scheme for globals introduced in Lua 5.2 replaced the
ad hoc manipulation of environment tables attached to Lua functions with a transparent,
lexically clear construct; accordingly, the special functions setfenv and getfenv were
removed. In this new scheme, Lua does not have global variables, although it goes “to
great lengths to pretend it has” [13]. The compiler converts any free variable name var
to _ENV.var. All Lua chunks are anonymous functions that have an implicit upvalue
(a variable that is local to an enclosing block) named _ENV. The initial value of this
upvalue is the global environment, a regular table. So, the expression _ENV.var refers
to the entry indexed by the string "var" in the global environment; that entry is what
we call the global var. The overall behavior is that of conventional global variables,
thus maintaining the illusion.

The trick of this scheme is that there are no tricks. The translation of var to
_ENV.var is literal. Except for the fact that every chunk has an upvalue with the name
_ENV, there is nothing special about this name; it is bound following the regular rules
for lexical scoping in Lua. Typically, _ENV means the implicit upvalue, but the compiler
will use any _ENV that is in scope. In particular, _ENV can be a local variable or a
function parameter. Moreover, the program can assign any value to these variables.
Thus, the value of _ENV can be changed at run time in a transparent, lexically clear
construct: Just assign _ENV or declare a new variable with that name. The somewhat
awkward name _ENV is meant as a reminder that this kind of manipulation is not to be
taken lightly.

Despite all this flexibility, no piece of code outside a function can change its
environment unless the function itself provides some support for that. This constraint
enhances the role of functions as the main mechanism for modularity in Lua [6].

It is worth emphasizing that the implementation of the lexical scheme for globals is
mostly limited to the compiler. Outside the compiler, it requires only a couple of details:

• The registry keeps a table, which is used as the standard table of globals.

• After a new chunk is compiled, the interpreter sets this table of globals as the
initial value of the first upvalue of the chunk (the implicit _ENV variable).

As a final touch for convenience, the error-reporting mechanism “corrects” refer-
ences to _ENV fields when creating error messages:

$ lua

> a + 1
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--> attempt to perform arithmetic on a nil value (global ’a’)

> _ENV.a + 1

--> attempt to perform arithmetic on a nil value (global ’a’)

> t={}; print(t.a + 1)

--> attempt to perform arithmetic on a nil value (field ’a’)

Some examples. Here are some examples of uses of _ENV [13, chapter 22]:

• Forbidding access to global variables: Setting _ENV=nil invalidates direct access
to global variables in the rest of the chunk. This is useful to control what global
variables are being used, for both reading and writing. Here is a typical use:

local sin = math.sin -- _ENV.math.sin

local cos = math.cos -- _ENV.math.cos

_ENV = nil

-- no more access to globals;

-- only ’sin’ and ’cos’ are available

• Tracking access to global variables: Giving appropriate metamethods to _ENV

allow us to track all accesses to global variables in the rest of the chunk. The
following code does the trick:

local _ENV = setmetatable({},

{__index = function (_, key)

print("read", key)

return _ENV[key]

end,

__newindex = function (_, key, val)

print("write", key, val)

_ENV[key] = val

end})

We create a new local variable _ENVwith an empty table and appropriate metameth-
ods. Because the table is empty, any read or write to this table triggers a cor-
responding metamethod (__index for a read, __newindex for a write). Both
metamethods print a log message and then perform the desired operation in the
original environment. (A subtle point is that the new _ENV is visible only after
its declaration, so the _ENV used in its initialization bounds to the original _ENV.)
This technique is known as proxying; it can be applied to any table, not just _ENV.

• Read-only environment: To avoid some code changing global variables, we can
use proxying, except that the read metamethod just repeats the access in the
original environment and the write metamethod raises an error:

local _ENV = setmetatable({},

{__index = _ENV,

__newindex = function (_, key, val)

error("invalid write")

end})
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• Sandboxing: To run some (probably untrusted) code in a controlled environment,
populate a new table with trusted functions and assign it to _ENV. The remainder
of the chunk will be evaluated in this trusted environment. Alternatively, assign
to _ENV an empty table that inherits from the original _ENV:

_ENV = setmetatable({}, {__index = _ENV})

This allows code to read existing global variables while protecting them from
writing: All global assignments will go to the empty table.

• Flexible functions: A function having _ENV as a parameter can be evaluated in
multiple environments that are given dynamically, as an argument. For example,
function foo (_ENV,...).

4.2. Integers

The very first version of Lua, released in 1993, had only single-precision floating-
point numbers. JavaScript, from 1995, had (and still has) only double-precision floating-
point numbers. In 1998, Lua 3.1 changed the numeric type to double-precision numbers.
Curiously, the main reason for that change was not directly related to float precision.
Single-precision numbers have a mantissa of 24 bits and therefore can represent exact
integers only up to 224, approximately 16 million. For systems that measure time like
Unix, counting seconds from some epoch, 24 bits last less than one year. Signed 32-bit
integers last 68 years. The mantissa of double-precision numbers has 53 bits, which can
count individual seconds for over 285 million years.

Double-precision numbers offer several advantages. They have a very well-defined
behavior, dictated by the ubiquitous IEEE 754 standard [19]. Most conventional platforms
have hardware support for them. Their 53-bit mantissas allow them to represent integers
precisely up to more than 1015. The language itself becomes simpler by having a single
unifying numeric type.

However, double-precision numbers also have their drawbacks. First and foremost,
they cannot represent 64-bit integers fully. While few programs need 64-bit integers for
counting, several modern algorithms, such as cryptography, do need them, Also, 64-bit
integers are used as handles in APIs, for instance in Windows. A second drawback re-
gards performance in restricted hardware. Lua is quite popular in embedded systems [1],
which typically lack hardware support for double-precision arithmetic; moreover, their
restricted memory would benefit from a smaller representation of numbers in Lua.

A third, often neglected drawback is that integers were already present in the
language, but hidden as a second-class type. Several functions in the API have integer
parameters, such as the indices in the string library. Nevertheless, the language did not
specify how a Lua number was converted to those integer values. As an example, what
should be the result of the following expression?

string.sub("hello", -2.1, 3.9)

Is this an error or should Lua silently convert indices to integers? If so, should it truncate
or round?
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A particularly problematic instance of integers as second-class values regards bitwise
operations. For a long time, Lua did not have bitwise operations exactly because of the
lack of a proper integer type. How should bitwise operations behave with floating-point
numbers? Should they operate on 53 bits? Should they operate on signed integers? As a
stopgap, Lua 5.2 introduced bitwise operations as a library, to avoid a full commitment
of the language itself to any specific second-class integer representation. But a library
falls short for such common operations present in most other programming languages.
Moreover, it is tedious to convert existing code in other languages that use bitwise
operators into function calls.

A final drawback comes from the implementation of Lua. Since version 5.0, Lua
optimizes the representation of arrays (tables with consecutive integer keys) by using
an actual array to store their values, thus avoiding storing the keys [20]. To index these
internal arrays, the interpreter has to convert any index from a float to an integer, and
that operation is somewhat slow in some architectures.

For all those reasons, we decided to add an integer numeric type to Lua, starting in
version 5.3, released in January 2015. We report below the main design decisions in this
change to the language, how those decisions evolved, and how the new feature worked
in real life.

Alternatives. Before settling on the current implementation, we considered several
alternatives to solve the drawbacks of a single double-precision numeric type, mainly
using long double, using integers internally, and making integers a new type.

Long double. The same way we changed from single precision to double precision
when we needed 32-bit integers, we could repeat the trick by changing the Lua numeric
type from double precision to quadruple precision, whose mantissa has 113 bits [19].
That solution keeps the simplicity of a single well-defined numeric type while adding
support for 64-bit integers. However, it does not solve the other issues that motivated
integers in the first place. It does not address the problem of integers being a second-
class type in the language. It does not address the performance issue of converting
floats to integers when indexing arrays. It worsens the support of Lua for restricted
hardware. A final hindrance is that ISO C does not support quadruple-precision floats.
The C standard offers a type long double, which in the x86-64 architecture is typically
an 80-bit float, with a 64-bit mantissa. (Due to alignment, it may occupy 16 bytes in
memory.) However, the C standard allows this type to have the same characteristics of a
regular double.

Integers as an “implementation detail”. A large part of the design space for adding
integers to Lua revolves around how programmers see this new type. One approach is to
make it as invisible as possible. Lua would keep one single numeric type, but internally
it could use a floating-point representation or an integer representation, depending on a
set of conditions. Ideally, Lua would select, for each value, the format that can represent
that value more accurately. However, the correct implementation of this semantics is
prohibitively expensive, as it cannot use the operations implemented by the hardware.
As an example, consider the product (2^62 + 2) * 0.5. The first operand has an
exact representation as a 64-bit integer (but not as a double); the second operand has
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an exact representation as a double (but not as an integer); the result has an exact
representation as a 64-bit integer. However, we cannot perform that multiplication either
as an integer multiplication or as a float multiplication.

Integers as a new type. Another approach for providing 64-bit values to Lua would be to
add a new type corresponding to integers. That solution keeps the uniformity of IEEE 754
for floating-point values and solves most of the problems listed above. Within this broad
approach, there are still several smaller decisions to be made, especially concerning
the relation between floats and integers: mixed arithmetic operations, conversions
and casts between them, etc. However, independent of these smaller decisions, this
approach has a major drawback: lack of compatibility. With this change, the simple
check type(x) == "number" would fail for integer values. Because Lua did not have
integers, programmers did not distinguish between 0 and 0.0. Suddenly, any code that
checks the type of a value would distinguish 0 from 0.0.

Main design decisions. After careful consideration of those several alternatives, it
became clear to us that the best way to reconcile compatibility with all the improvements
expected from an integer type was to implement integers as a subtype of numbers. The
type number would comprise two subtypes: float and integer. (The term float here
refers to any floating-point representation, regardless of its size.) All operations would
either accept both subtypes or try to convert one to the other. In particular, an integer
value can always be converted to a float, perhaps losing precision. In the other direction,
there were some choices to be made. For instance, a conversion from float to integer
could entail some kind of rounding. After some consideration, we opted for no implicit
rounding: If a float does not have an exact representation as an integer, the conversion
fails. We thought that, more often than not, a non-integer value being used where an
integer is expected (e.g., as an index into a string or in a bitwise operation) hints at some
bug in the program. When needed, the programmer should explicitly round the value
appropriately.

We adopted the following principles to guide other decisions regarding these two
subtypes:

• Whenever possible, the language should avoid differences between the two sub-
types. A change between 0 and 0.0 should have a minimal effect on a program.

• At the same time, the language should have explicit and clear rules regarding how
each subtype behaves.

These two principles are summarized in the following rule: “The programmer may
choose to mostly ignore the difference between integers and floats or to assume complete
control over the representation of each number” [12].

Arithmetic operations. We started by borrowing the semantics that many languages
adopt for arithmetic operations: Integer operands give an integer result; mixed or float
operands give a float result.

For addition, multiplication, and subtraction, this rule matches our first principle:
Because the integers are closed under these operations, the results do not depend on the
subtype of the operands, except in case of overflows.
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> 5 * 1024 --> 5120

> 5.0 * 1024.0 --> 5120.0

The integers are closed also under the modulo operation (%), so this operation can follow
the same rule.

For division, from the start we followed the lesson from Python 3 and avoided the
confusion of 5.0/2 being 2.5 but 5/2 being 2. Regular division always operates on
floats and gives a float result.

> 5.0 / 2 --> 2.5

> 5 / 2 --> 2.5

A new integer division — denoted by “//” (borrowed from Python 3) — floors its result
to an integer. Initially, we named that operator integer division [21], but later we renamed
it to floor division (also borrowed from Python), due to a subtlety: That operation is not
restricted to integers. Instead, it follows the general rule for arithmetic operators: Integer
operands give an integer result, mixed and float operands give a float result — although
the result is always an integral value.

> 5.0 // 2 --> 2.0

> 5 // 2 --> 2

> 2.5 // 0.5 --> 5.0

> 1e300 // 2 --> 5e+299

The exponentiation operation had a more convoluted evolution. We initially consid-
ered several variations, including a design where integer operands give integer results.
Under this rule, most operations with a negative exponent would result in zero: x^-y
would be equal to 1/(x^y), and the cast of the fraction to an integer would result in
zero. This seems neither useful nor intuitive, so we ruled out this option.

For the first implementation, we settled for a rule where an integer exponentiation
was performed only when both operands were integers and the exponent was nonnegative.
So, 2^2 resulted in 4 (as an integer), but 2^-2 resulted in 0.25. However, that design
was changed before Lua 5.3 alpha. To keep the type rules simple, we adopted a third
principle: The subtype of an operation could depend on the subtypes of its operands,
but not on the values of those operands. This principle voided our implementation for
exponentiation. Instead, we settled for an exponentiation that, like division, always
operates on floats and gives a float result. In common uses that is hardly an issue,
except for powers of two: More often than not, when we compute powers of two we are
thinking about bits and exact representations.

> 2^60 --> 1.1529215046068e+18

> 1 << 60 --> 1152921504606846976

The float 2^60 can be safely coerced to the exact integer value, but we don’t see that
when printed. Moreover, it also can spoil other operations after it. For instance, 2^60+1
results in 2^60, because the addition is done with floats, which do not have enough
precision for the added one.
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Bitwise operations. For bitwise operations, we adopted the C operations and operators,
except for the exclusive or, that is denoted by ~ in Lua. (The caret in Lua already
denoted exponentiation.) All bitwise operations operate only on integers: Any float
operand is converted to an integer. In particular, the expression x|0 is an easy way to
coerce a number to an integer. Following the general rule for this conversion, an error is
raised if the float does not have an exact integer representation.

> 3.0 | 0 --> 3

> 3.1 & 3 --> error: number has no integer representation

> 1e100 & 3 --> error: number has no integer representation

The bitwise shift operations work with any offset. Negative offsets shift in the
opposite direction; offsets larger than the integer size result in zero, as all significant
bits are shifted out.

> 8 << 1 --> 16

> 8 << -1 --> 4

> 8 >> -3 --> 64

> 1 << 65 --> 0

The right shift is always a logical shift; there is no arithmetic shift. (Even ISO C does
not have an arithmetic shift. According to the standard, the resulting value for a right
shift of a negative value is implementation-defined [22].)

Explicit rounding. Another clouded area was the functions to convert floats to integers,
namely math.floor, math.ceil, and math.modf. At first, we adopted the rule that
types do not depend on values. An option then would be to have always integer results
from these functions. However, these functions are useful for float computations too,
and giving only integer results would constrain the range of values that these operations
could handle. So, we opted initially for the general rule “integer input implies integer
output”, but that was kind of useless: We end up with no functions to convert floats to
integers. (Not to mention that it makes little sense to apply these functions to integer
values.) In the end, we decided that these functions, being specific for float–integer
conversions, could break the rule that types cannot depend on values. For them, if the
result fits in an integer, it is typed as an integer; otherwise the result is a float:

> math.floor(5.3) --> 5

> math.floor(1e20) --> 1e+20

(For float-only computations, any integer result will be safely converted back to a float
when used in any subsequent computation that requires a float.) Moreover, to give the
programmer finer control over conversions, we added another function that mimics the
implicit conversion that Lua does, but returns nil in case of errors:

> 100.0 | 0 --> 100

> math.tointeger(100.0) --> 100

> 100.5 | 0 -- error!

> math.tointeger(100.5) --> nil
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Integer overflows. As previously mentioned, the results of arithmetic operations over
floats and integers diverge when there is an overflow. For floats, the IEEE 754 standard
provides specific rules for handling overflows. For integers, we considered three options:
convert to float, raise an error, or wrap around.

The first option would be to convert the result of the operation to float if it overflowed
the integer representation. That option keeps strict compatibility with previous versions
of Lua without an integer subtype, but it has few other advantages. In particular, it
breaks the rule that the type of a result should not depend on the particular values of the
operands. It also adds some overhead over arithmetic operations, for checking overflows.
The second option would be to raise an error in case of overflows. That would be the
cleanest design. However, it adds an overhead over arithmetic operations and rules out
the use of integers as unsigned values. In the end, we adopted the third option, to wrap
around results. That solution has zero overhead in any two-complement architecture
and an added benefit of allowing Lua integers to represent unsigned integers.

For literals, we started with that same rule: Any integer literal too large to fit into
an integer would have its value reduced modulo the integer size. However, there were
some complaints in the mailing list. A main issue was that it is not uncommon to write
a literal without a decimal point when it does not have a fractional part, even if the
value is intended to be a float. Lua 5.2 would read back the number correctly (as a
float), but Lua 5.3 would read it as an integer and then wrap around the value, giving a
wrong result. So, in Lua 5.3.3 we changed that rule, so that literal decimal integers that
overflow are read as floats. Literals in hexadecimal, however, are still read as integers,
with wrap around. A subtle aspect of this new rule is the handling of the minimum value
for integers. Like most languages, Lua reads the value -9223372036854775808 as
-(9223372036854775808), that is, an unary minus applied over a positive constant.
The positive constant 9223372036854775808 overflows, so Lua reads it as a float, and
the unary minus applied to a float results in a float:

> 9223372036854775808 --> 9.2233720368548e+18

> -9223372036854775808 --> -9.2233720368548e+18

However, as we already discussed, this value is readily converted to an integer if needed,
so that behavior is not a real issue. Moreover, programmers should seldom write this
constant: Lua now provides a constant math.mininteger with that value with the
correct type. (It also provides a corresponding math.maxinteger.)

Order operations. Since we started considering the inclusion of integers in Lua, we
considered that order operations should respect the usual arithmetic conversions from C,
just like the arithmetic operators. After all, that is what a CPU offers us: Either we
compare two integers or we compare two floats.

Lua 5.3.0, the very first version of Lua with integers, was released with that semantics
for order operators. After the release, however, we realized that it need not be that
way. After all, the result of a comparison, being a boolean, can always be correctly
represented, no matter the types of the operands. Lua 5.3.1 changed the semantics, so
that a comparison always gives the correct mathematical result, no matter the types
of the operands. As an example, consider the comparison (1 << 60) + 1 <= 2^60.
With the first semantics, as the second operand is a float, the first operand is coerced to
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a float. Because a double-precision float has only 53 bits of mantissa, the operand was
rounded from 260 +1 to 260, and the whole expression evaluated to true. With the new
semantics, the final result is false, as expected.

The current implementation uses the following algorithm for numerical comparisons.
If both operands have the same type, the standard CPU operations already give the
correct result. For mixed types, if the integer operand can be represented exactly as a
float — that is, its absolute value is less than or equal 2n, where n is the number of bits in
the float mantissa — that operand is converted to a float and the two floats are compared.
That is by far the most common case and it is reasonably efficient. Otherwise, if the
floor (or the ceiling, depending on the specific comparison) of the float operand is inside
the range of integers, then it is converted to an integer and the two integers are compared.
(If i is an integer, then f < i if and only if ⌊ f ⌋ < i.) This path can be slower, due to
the conversion from float to integer. Otherwise, we just check the sign of the float: A
number not in the range of integers either is larger or smaller than all integers.

Conversion to string. A subtle point in the introduction of subtypes of numbers regards
the conversion of numbers to strings and, consequently, the way numbers are printed.
With all numbers being float, 1 and 1.0 are exactly the same thing. In particular, in
previous versions, numbers without a decimal part were printed without a decimal point:

$ lua5.2

> print(1.0)

1

With the introduction of subtypes, we thought it would be useful to distinguish between
printed floats and integers. So, we changed the conversion to always ensure the presence
of a floating point or an exponent in a numeral representing a float:

$ lua5.3

> print(1.0)

1.0

> print(1)

1

> print(1000000000000000)

1000000000000000

> print(1000000000000000.0)

1e+15

Note that all our previous examples have used the new format, so that we can easily tell
floats from integers.

The documentation has always stated that the coercion from numbers to strings
followed “a reasonable format” [23], without any further details. So, this change was not
strictly an incompatibility. All the same, it was perhaps the main cause of compatibility
issues for programmers migrating from Lua 5.2 to Lua 5.3. Many programs broke when
receiving ‘1.0’ while expecting ‘1’. Nevertheless, we do not regret the change. In fact,
more often than not these issues revealed small problems in the program: A computation
that should be performed only with integer values was being tainted by some float value.

16



Variants. As we already discussed, until Lua 5.2 numbers in Lua were all double-
precision floating-point numbers. The source code had some configuration macros
to facilitate the change of that type. According to the documentation, “[it] is easy to
build Lua interpreters that use other internal representations for numbers, such as single-
precision floats or long integers” [23]; however, those macros were neither officially
supported nor tested. Nevertheless, some projects have used that facility. For instance,
Lunatik, a framework for scripting the Linux kernel with Lua [24], compiles Lua with a
sole integer type, because the CPU cannot run floating-point operations inside the Linux
kernel.

Another benefit from the new integer type is that it made single-precision floats more
attractive, as the integer type allows the exact representation of 32-bit values, something
that was not possible having only single-precision floats. Moreover, the whole code
base became cleaner, with fewer and better-defined points of conversions between floats
and integers. In the end, Lua 5.3 incorporated official support for alternative numerical
types. The integer type can be int (usually 32 bits), long, or long long (usually 64
bits), while the float type can be float (usually 32 bits), double (usually 64 bits), or
long double. All combinations are fully tested before any new release.

A configuration with 32-bit integers plus single-precision floats is particularly
interesting. The 32-bit integers solve the problem that single-precision floats cannot
store 32-bit quantities. In 32-bit architectures, where pointers also have 32 bits, a generic
Lua value fits in 32 bits (plus a tag). That configuration got the name of Small Lua. We
have anecdotal evidence of it being used in embedded devices.

During the whole process of adding integers to Lua, compatibility was always a
main concern. We think we did a good job on this front: We got a few complaints about
the format change from ‘1’ to ‘1.0’, and that was mostly it. (The Lua manual never
specified how numbers are formatted when coerced to strings, so that was not even an
incompatibility according to the documentation.) After we arrived at a good design, it
is difficult to see how things could be different, except for some details. For instance,
integer and float numbers could have different types, instead of a single type number
for both. Overall, though, compatibility did not have a big impact in the final result.

4.3. Yieldable C calls

The implementation of coroutines in Lua 5.0 used a stackless interpreter. (In this
context, “stackless” means that the interpreter does not use the C stack for its calls.)
When the program calls a Lua function, the interpreter does not perform a corresponding
call in C. Instead, it mimics a real CPU: It pushes on the Lua stack (a regular data
structure) the state of the interpreter in the current function and goes to execute the code
of the called function. When it reaches a return instruction, it pops from the stack the
state of the caller function and continues its execution.

That scheme works pretty well when a Lua function calls another Lua function, but
it cannot support calls to C functions: These calls clearly need the C stack. Therefore,
Lua 5.0 disallowed yields while running a C function; a runtime check raises an error in
that situation.

In general, that restriction was not a big issue. Typically, C functions implement
external tasks that would not yield anyway. When a C function calls back Lua, it is often
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for short tasks, such as comparing two values in table.sort or providing a substitution
value in string.gsub.

However, in one particular case that restriction was more than an inconvenience.
Lua does exception handling through protected calls: The function pcall calls any
given function in protected mode, where it captures any error raised during the call and
returns the error message. The function pcall is implemented in C, and so it had that
same restriction. As a result, any function running in protected mode could not yield.

In 2005, Mike Pall came up with a smart scheme to solve that restriction. In a
simplified view, his scheme involved three parts.

• All coroutines are interpreted within the scope of a protecting setjmp. This was
already the case, as errors in coroutines are not propagated through resumes.

• When there is an yield while Lua is running inside a C function, the interpreter
does a long jump to the respective resume. This long jump effectively erases from
the C stack any C function that was active at that time.

• When the time comes to resume a C function that was erased by the long jump,
the interpreter calls the function again. (The function pointer is in the Lua stack.)
Clearly, the function itself should be prepared to be called again. For that, it could
use a new API function to know whether it was being called as a new invocation
or to continue a previous call that was interrupted by an yield.

In Lua 5.3, we refined that scheme. Instead of calling again the same function to
continue the work after an yield, the interpreter called another function to that end.
Here is an example. Suppose we have a C function foo that wants to yield midway its
execution. Initially, its hypothetical code looks like this:

// doesn’t work!

int foo (lua_State *L) {

// do some stuff

lua_yield(L, n); // yields n values on stack

// do some more stuff after yielding

}

Clearly, this code will not work correctly, because lua_yield does a long jump and
never returns, and so the second block is never executed. To fix that, put all code to
be executed after the yield in a continuation function. Then change lua_yield to
lua_yieldk, which allows us to pass the continuation function to Lua:

// continuation function

int foo_cont (lua_State *L, int status, lua_KContext ctx)) {

// do some more stuff after yielding

}

int foo (lua_State *L) {

// do some stuff

lua_yieldk(L, n, 0, foo_cont);

return 0;

}
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(We will explain the parameters of foo_cont shortly.) As before, lua_yieldk will
do a long jump and never return. (The return statement is dead code, although the
compiler does not know that. It is there only to avoid warnings.) But when the time
comes to resume foo, the interpreter instead calls the continuation function (which was
saved in the Lua stack) to finish what foo had to do. Besides the ubiquitous Lua state L,
the continuation function — foo_cont in the example — receives two more parameters.
The second parameter, status, is used for error handling, which is outside the scope of
this short description. The third parameter, the context ctx, is an arbitrary value that
the original function (foo, in our example) can pass to its continuation. It is the third
argument to lua_yieldk (0, in our example). Lua does not use this value for anything.

A key property of coroutines in Lua is that they are stackfull: A coroutine can
yield from inside several levels of function calls, and then resume with that same call
stack. Therefore, besides a C function yielding itself, we also want it to be able to
call back to Lua allowing that Lua code to yield. The scheme we use to support these
indirect yields is similar to what we presented for direct yields. When a C function
wants to call a Lua function, it does so by calling an API function lua_callk. Like
lua_yieldk, lua_callk receives a continuation function. Unlike lua_yieldk, which
always yields, lua_callk may or may not yield, depending on the called Lua code.
If the Lua code does not yield, lua_callk returns normally. Otherwise, the call is
interrupted, and when the time comes to resume the interrupted C function, Lua calls
the given continuation function instead.

4.4. Garbage collection

Like most dynamic languages, Lua features automatic memory management in the
form of garbage collection [25]. Since its first version, Lua has used a tracing collector:
The collector traces objects that are reachable from a root set — roughly all global and
local variables — and collects those that are not reachable. Over this basic concept, the
implementation of garbage collection in Lua has evolved significantly as Lua became
more complex. All objects in Lua are subject to garbage collection: tables, strings,
functions, threads (coroutines), userdata, modules (which are actually tables), etc. Most
internal structures in the interpreter also have their existence and sizes controlled by
the garbage collector: stacks, the store for internalized strings, the registry (which is a
table), the global environment (which is a table), etc. The only memory increase in Lua
that cannot be reversed is the binding of dynamically linked libraries.

Stop the world. From its birth in 1993 until version 5.0, Lua used a mark-and-sweep
collector. From time to time, the interpreter runs a complete garbage-collection cycle,
which comprises two main phases: mark, where it traverses and marks all reachable
objects, and sweep, where it traverses all objects releasing those that have not been
marked. A major drawback of mark-and-sweep collectors is that a whole cycle can take
some time — after all, it has to visit all objects in the memory. While the collector is
running, the rest of the program cannot progress. For that reason, that kind of collector
is often called a stop-the-world collector [25].

Incremental collection. Stop-the-world collectors are not particularly suited to soft
real-time applications, such as video games; long pauses spoil the user experience.
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So, in 2006, Lua 5.1 introduced an incremental collector. As the name implies, an
incremental collector does its job incrementally, in small steps interleaved with the
mutator. (From the point of view of the garbage collector, the rest of the program is just
some nasty code that insists on changing the reachability graph while the collector tries
to do its job. For that reason, the main code is often called the mutator [25].)

Incremental collectors solve the problem of the long pauses caused by a conventional
stop-the-world collector. However, they do nothing to improve performance in general,
quite the opposite. To allow the concurrent execution of the collector and the mutator,
an incremental collector uses barriers. Barriers are checks in the interpreter that
test whether some operation breaks an invariant from the collector. If so, it notifies
the collector so that it can restore that invariant. Those checks add overhead to the
interpreter. Moreover, the control for an incremental collector is more complex than for
a stop-the-world collector.

Generational collection. To improve performance, Lua 5.2 introduced a generational
collector. The motivation for a generational collector comes from the observation
that, typically, most objects die young [25]. Based on this observation, a generational
collector concentrates its work on young objects. Roughly, the objects are sorted in
two (or more) generations. As they survive garbage-collection cycles, they move to
older generations. In a minor collection — the norm — the collector assumes that all old
objects are alive, and therefore need not be visited; the collection takes a fraction of the
time of a regular collection. Moreover, as minor collections are fast, they need not be
incremental. If the collector detects too many old objects, then it runs a major collection,
where it traverses all objects, young and old. Ideally, major collections should be rare or
even unnecessary.

The collector in Lua 5.2 actually had two modes: It had this new generational mode,
but it also kept the previous incremental mode. Several parts of the implementation are
shared by the two modes. In particular, they share the same barriers. In the incremental
collector, the barriers detect the creation of links from black objects — objects that were
already traversed by the collector — to white objects — objects not yet touched by the
collector. In the generational mode, the same barriers detect the creation of links from
old objects to young objects.

While the main invariant for the incremental mode is that black objects do not link
to white objects, the main invariant for the generational mode is that old objects do
not link to young objects. (As old objects only link to old objects and old objects are
not collected in a minor collection, the collector does not need to traverse old objects.)
Accordingly, the generational mode simply ensures that all old objects are marked as
black, while young object are marked as white. With that invariant, the same barrier
works both for the incremental and the generational modes.

Lua uses two kinds of barriers: back and forward. In a back barrier, the old object
becomes touched, meaning that it will have to be traversed. In a forward barrier, the
young object becomes old. Each particular kind of link has its own policy. For instance,
if the link is from an object to its metatable, then the metatable becomes old — a forward
barrier — as there is a good chance that the link will not change and that other objects
will also link to that same metatable. However, if the link is from a regular table entry,
then the table becomes touched — a back barrier — as there is a good chance that other
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entries in that table will change too. (Once the table is touched, other changes in it will
not trigger the barrier.)

Generational collection in practice. The Lua interpreter started in incremental mode,
and programs could change the collector mode to generational with a function call.
However, the generational mode never became very popular, because it failed to improve
the performance of most programs. It took us some time to discover why.

The generational mode in Lua 5.2 used two generations. To keep things simple, any
object that survived one collection was considered old. That simple policy created a
problem. During the interval between two cycles, inevitably some objects would be
created just before the next cycle; therefore, they would still be alive at that cycle and
would be promoted to old. So, even if all objects created by a program have short lives,
still the program would need major collections from time to time. These frequent major
collections hinder the collector.

A possible solution would be to wait two cycles, instead of just one, to move an
object to the old generation. Waiting one cycle, the minimum time between the creation
of an object and its promotion to old is an epsilon; with two cycles, that minimum time is
the time between the two cycles. However, that change largely increases the complexity
of the collector, as we will discuss in a moment. So, we removed the generational mode
in the next version, Lua 5.3.

Generational collection revisited. In Lua 5.4, we tackled the generational collector
again. In this new version, an object waits two cycles before becoming old. When
objects live only one cycle as young, the main invariant is trivially preserved: When
an object becomes old, all objects it points to also become old. When objects wait two
cycles before becoming old, that property is no longer true; an object can become old
while pointing to another object that still needs one more cycle to become old. So, the
collector must actively control these links.

In the new collector, all objects are created new; see Figure 3. After surviving one
cycle, they become survival. We call them both young objects. Young objects can point
to any other object, as they will be traversed at the end of the cycle. If a survival object
survives another cycle, then it becomes old-1. Old-1 objects can still point to survival
objects (but not to new objects), so they still must be traversed. After another cycle (that,
being old, old-1 objects will survive no matter what), finally the old-1 object becomes
really old, and then it is not traversed any more.

As we already discussed, the generational mode uses the same barriers used by the
incremental mode. If a young object is caught in a forward barrier, it cannot become
old immediately, because it can still point to other young objects. Instead, it becomes
old-0, which in the next cycle becomes old-1. In short, old-0 objects are old — in the
sense that they will not be collected in minor collections — but can point to new and
survival objects; old-1 are old but cannot point to new objects; and old cannot point to
any young object. Moreover, if any old object is caught in a back barrier, it becomes
touched-1 and goes into a special list, to be visited at the end of the cycle. There it
evolves to touched-2, which can point to survivals but not to new objects. In yet another
cycle then it becomes old again.
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Figure 3: Object states and transitions in generational mode.

22



So, while the generational collector in Lua 5.2 had three states (young, old, and
touched), the collector in Lua 5.4 has seven: new, survival, old-0, old-1, old, touched-1,
and touched-2. Clearly, that increases the complexity of the implementation, but not
as much as it sounds. The original young state became new and survival, and the
original touched state became touched-1 and touched-2. At each cycle, all surviving
new objects evolve to survival and all touched-1 objects evolve to touched-2. As
they evolve in tandem, their invariants are automatically preserved. The main source
of extra complexity was the fact that not all objects become old at once, leading to
this scheme with three old states. Overall, the extra complexity is much more in the
reasoning — making sure that all cases are covered — than in the code itself.

In return to this extra complexity, we have got a better collector. Many programs do
not depend on the performance of the garbage collector, as the time it takes is irrelevant
to the total run time. Accordingly, several benchmarks did not benefit from the new
collector. For other programs, the garbage collector can have a relevant impact, so these
programs can benefit from a better collector. For instance, a simple benchmark with
Conway’s Game of Life runs 35% faster with the generational mode when compared
with the incremental one, using slightly less memory. Another benchmark, which builds
and traverses binary trees with different sizes, runs 66% faster using 25% less memory.
None of our benchmarks ran slower in generational mode.

One drawback of the generational collector in Lua 5.4 is that major collections are
done atomically (“stop-the-world”). The (as of this writing) upcoming Lua 5.5 will fix
that, allowing major collections to be done incrementally.

4.5. Finalizers and related features

Since version 2.1, released in 1995, Lua features some mechanism for object final-
ization. The essence of that mechanism has remained unchanged ever since: It allows a
finalizer function to be associated to an object; when the object is about to be collected,
the garbage collector calls that function, with the object as its argument.

Object finalization raises issues of how the program interacts with the collector. At
first, only tables could have finalizers, as only tables behaved like “objects”, with a clear
concept of self. In Lua 3.0, userdata acquired object behavior, and so finalizers could be
attached to them, too. Once userdata got finalizers, the two concepts became closely
associated: More often than not, finalizers are used to release some external resource,
and external resources are represented by userdata inside Lua.

The proper semantics of finalizers has several subtleties, in particular regarding
resurrection: If a finalizer saves the object being finalized in a global variable or any
other external structure, the object is resurrected and cannot be collected. Despite the
widespread use of this term, it is somewhat misleading: The moment the finalizer is
called, the object must already be resurrected; a dead object could not be an argument
to the finalizer. Moreover, resurrection is transitive: If object B is only referred to
by object A, and A is resurrected, then B must also be resurrected. Once the finalizer
receives A, it can also access B.

A consequence of this semantics is that the collector cannot free any object before
traversing the complete transitive closure of the objects being finalized after a collection.
In statically typed languages, the compiler knows beforehand whether an object has a
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finalizer, due to its type (or class). In a dynamic language like Lua, any object can have
a finalizer. That poses a problem for the garbage collector.

Before Lua 4, the collector traversed all objects, separating all dead objects with
finalizers. That task was slow. Based on the observation that finalizers are mostly used
with userdata, Lua 4.0 restricted finalizers to userdata; so, the collector could traverse
only the list of userdata to look for objects to be resurrected.

Both Lua 5.0 and 5.1 kept the restriction that finalizers only worked for userdata.
Lua 5.2 removed that restriction. To avoid traversing all objects when looking for
resurrection, Lua 5.2 introduced the concept of marking objects for finalization. An
object is marked for finalization when you set its metatable and the metatable has a
finalizer — that is, a __gc entry. When this happens, the object is moved to a special
internal list. Therefore, when looking for resurrection, the collector has to traverse only
this list of marked objects, instead of all objects.

The concept of marking for finalization created an incompatibility: If an object gets
a metatable with no finalizer and later the metatable gets a finalizer, Lua 5.1 would call
that finalizer when collecting the object, but Lua 5.2 would not. Nevertheless, nobody
seemed to care. (At least, we got no reports about it.) In fact, it is not common practice
to change the metamethods inside a metatable after the metatable is being actively used.

Ephemeron tables. Besides finalizers, the other main way a program interacts with the
garbage collector is through weak references, implemented through weak tables in Lua.
As we already discussed, Lua offers three kinds of weak tables: tables with weak keys,
where the keys are weak; tables with weak values, where the values are weak; and tables
that are fully weak, where both keys and values are weak. In all cases, if a key or a
value is collected, the whole entry is removed from the table.

Tables with weak keys can create a strange form of cycles that resembles a memory
leak. Consider an entry in a table with weak keys with object A as the key and object B
as its associated value. If neither A nor B have external links pointing to them, the only
way to access them is by traversing the table. Now suppose that B has a reference to A.
Because the values in the table are strong, B will be visited by the garbage collector and,
therefore, A will also be visited. So, the entry (A,B) will not be removed from the table,
even with no other object referring to A or B.

To make the discussion more concrete, let us assume for a moment that there is
no way to traverse a table: The only operations on tables are get and set. With that
assumption, let us now consider a global variable T containing a table with weak keys
and with an entry (A,A). There are no other references to A anywhere else in the
program. Following the semantics of weak keys, there is a strong reference from T
to A, because A is a value of T ; therefore, A cannot be collected and that entry cannot
be removed from T . However, the only way to access that entry would be through the
key A, which is not present anywhere else. In the end, it is impossible for the program
to access that entry — even to remove it — so technically A is garbage, but the collector
cannot collect it.

A similar situation happens when the key and the value are different objects,
say (A,B), the value B has a reference to the key A, and there are no other refer-
ences to A or B. Again, the entry would be garbage, given that the program cannot
access it, but the collector would collect neither A nor B.
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Note that the previous discussion applies regardless of the keys being weak. If a
language offers tables without a mechanism to traverse them, it needs a garbage collector
that does not handle table entries just as independent references to the key and the value.
Otherwise, any entry with a lost key could cause a memory leak.

As tables in Lua do have a traversal mechanism, it is possible for the program to
access any entry in a table. So, formally, the entries in those previous examples would
not be garbage. However, the whole idea of a key being weak is that it can be removed
even if it is not garbage in a strict sense.

To solve this problem, Lua 5.2 introduced ephemeron tables [26], an adaptation for
tables of the concept of ephemerons [14]. An ephemeron table has weak keys. For its
values, it considers an entry (A,B) as equivalent to a reference from A to B, instead
of considering B strong. So, if there are no external references to the key A nor to the
value B, the entry will be removed. The case where B points to A becomes similar to a
cycle, with B pointing to A and A “pointing” (through the table) to B. Like any cycle, its
objects will be collected if there are no external references to them.

At first, we considered adding ephemeron tables as a new kind of weak table in Lua.
Later, however, we started seeing its semantics as the right semantics for tables with
weak keys. As discussed, we can always access a value in a table without knowing its
corresponding key, by traversing the table. Nevertheless, we could not find any use case
that would benefit from the original semantics, where a weak key is not collected when
only its strong value refers to it. So, Lua 5.2 incorporated the ephemeron mechanism as
a new semantics for tables with weak keys, instead of a new kind of table.

Deterministic finalization. An important limitation of finalizers is their nondeterminism,
that is, the uncertainty about when a finalizer will be called. Often programmers want
deterministic finalization, that is, the certainty at some point in the program that a given
finalizer has been called. An example of a mechanism that can provide deterministic
finalization is a finally block in Java and Python. Lua 5.4 introduced a somewhat
similar mechanism in the form of to-be-closed variables.

A key aspect in the design of Lua is its integration with C [9]. Most facilities of the
language are available to its API with C. A syntactic construct like try...finally is
not particularly amenable to be exposed through an API. For that reason, Lua based its
mechanism of deterministic finalization upon values. Syntactically, all the mechanism
called for was the introduction of attributes to the declaration of local variables:

local file <close> = ...

The annotation <close> declares file as a to-be-closed variable. We took the opportu-
nity to also introduce constants to the language, with just another attribute:

local two <const> = 2

two = 4 -- error: attempt to assign to const variable ’two’

(Neither close nor const are reserved words, since they appear only as attributes.)
Once a variable is declared as to-be-closed, its value is closed whenever the variable

goes out of scope: That includes normal block termination, exiting its block by break,
goto, or return, or exiting by an error. To close a variable means to call its __close
metamethod.
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To make the mechanism more robust, the <close> annotation adds two safeguards:
First, the program raises an error if the value being assigned to the variable does not
have a __close metamethod, unless that value is a false value (nil or false). Second,
it makes the variable constant, that is, the program cannot assign another value to the
variable.

Unlike a real finally block, a to-be-closed variable is always associated to a specific
object. In practice, more often than not a finally block is attached to some specific
resource that is represented by some specific object. Nonetheless, nothing stops a
programmer from creating a dummy variable and attaching their particular finally block
to its __close metamethod. Lexical scoping ensures the metamethod has access to all
values that would be available to the block.

A major advantage of this design for Lua is its interface with C. Unlike a syntactic
construct like a finally block, to-be-closed variables integrate smoothly with the
C API. The <close> annotation becomes a function that attaches that attribute to a
stack slot. (A stack slot is the correspondent to a local variable in the Lua–C API.) Like
the <close> annotation, the call raises an error if the value at that slot does not have
a __close metamethod. As soon as that stack slot is popped — when the C function
returns, or there is an explicit pop operation, or there is an error — the interpreter calls
the __close metamethod.

Coroutines present a particularly interesting use of to-be-closed variables. Suppose
a coroutine acquires some resources, then it yields, and it is never resumed again. (For
instance, the program may decide to kill it.) In that scenario, those resources would
be locked indefinitely. Lua 5.4 provides the function coroutine.close: It closes all
pending to-be-closed variables of the coroutine, thus releasing their resources, and then
puts the coroutine in a dead state.

5. Other landmarks

Besides technical quality, social issues are also very relevant in the life of a pro-
gramming language that is widely used. In particular, an extensive online presence,
the production of quality technical literature, and the organization of user events for
exchanging ideas and experiences are all quite important for supporting a community
of programmers. Here we comment on some landmarks in the history of Lua after the
HOPL paper [3].

LuaJIT. In September 2005, Mike Pall announced the initial public release of LuaJIT, a
just-in-time compiler for Lua 5.1 targeting x86 CPUs. LuaJIT has evolved into a solid
product and now supports several major CPUs and all major compilers and operating
systems.

LuaJIT is a technical feat; it combines a high-speed interpreter, hand-crafted in
assembly, with a state-of-the-art JIT compiler to deliver impressive performance. LuaJIT
proved to be a success in several popular products, which helped increase the wide use
of Lua. Unfortunately, LuaJIT chose to stay mostly on Lua 5.1. In particular, LuaJIT
refused to implement the new lexical scheme for globals described in §3.2, thus breaking
the compatibility with future versions of Lua. That unfortunate decision has been a
source of noise for Lua users.
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Many users seem to go to LuaJIT lured by the promise of high performance at
no programming cost to them. However, LuaJIT was never a drop-in replacement for
Lua because LuaJIT relies on a quite different performance model: While Lua relies
on C libraries for expensive tasks, LuaJIT relies on specific programming patterns in
pure Lua programs. Because LuaJIT uses a trace compiler, C functions do not improve
its performance: Quite the opposite, they worsen its performance, because they break
traces.

Because of its incompatible performance model, since the beginning LuaJIT was
more a fork of Lua than a drop-in replacement. Moreover, LuaJIT added several
extensions to the language: Besides access to external functions, its FFI library allows
the manipulation of C-like data structures inside Lua code. A program using any of
these features cannot run in standard Lua.

Products that need high performance and can afford to code their Lua programs using
LuaJIT patterns can benefit greatly. For ordinary products and users, the performance
of the standard implementation of Lua seems more than adequate, as witnessed by its
success in the game industry.

The impact of perceived performance models on programming is well illustrated by
this anecdote:

Dennis Ritchie encouraged modularity by telling all and sundry that function calls
were really, really cheap in C. Everybody started writing small functions and
modularizing. Years later we found out that function calls were still expensive on
the PDP-11, and VAX code was often spending 50% of its time in the CALLS
instruction. Dennis had lied to us! But it was too late; we were all hooked. . .

— Steve Johnson (quoted by Raymond [27])

Programming in Lua. To reach the masses, a programming language needs a good
book. The book Programming in Lua first appeared in 2003 and was aimed at Lua 5.0.
Although somewhat outdated now, the first edition is still relevant for Lua programmers
and is freely available. Later editions appeared as new versions of Lua were released.
Along the years, different editions have been translated to German, Japanese, Chinese,
Korean, Russian, and Portuguese. The fourth and current edition appeared in 2016 and
covers Lua 5.3. The book turned to be a good success, with more than 50,000 copies
sold.

Lua Programming Gems. In November 2006 we posted a call for contributions to
a book of articles recording some of the wisdom and practice on how to program
well in Lua. We had many submissions, which were reviewed by the Lua team. Lua
Programming Gems was published in December 2008 with 28 articles. The book was
self published, like Programming in Lua. In October 2022, we made it freely available.
The book was a mild success, with more than 4,000 copies sold.

User forums. Spaces where users can meet (virtually or in person) and discuss Lua
are very important. One of the focal points of the Lua community is our mailing list,
created in February 1997. The discussions held there have been a constant source
of motivation and suggestions for improving Lua. There is also a mailing list for
discussions in Portuguese created in August 2009. Although mailing lists belong mostly
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to the previous century, they are still quite useful. Modern meeting places include Stack
Overflow (both in English and in Portuguese) prominently.

Lua Workshops. Since 2005, we have organized international workshops on Lua to
encourage the Lua community to get together and meet in person and talk about the
language, its uses, and its implementation. These events are small, cozy, and quite
enjoyable — and always technically strong. They serve the dual purpose of exhibiting
Lua projects and discussing the future of Lua. Several changes reported here were
first presented at a Lua workshop and have benefited from the feedback we got there.
The workshops are also a nice opportunity to meet enthusiastic members of the Lua
community.

The first Lua workshop was held in 2005 at Adobe’s headquarters in California.
It was then that we learned about how Lua got into the game industry [3, page 2-9].
After that, we have had workshops almost every year. We learned about LuaTEX in the
2006 workshop, hosted by Océ in The Netherlands. In several workshops, we saw a
demonstration of the Crazy Ivan robot, which is controlled by Lua and has won several
competitions. In 2009, we held the workshop at PUC-Rio in Brazil. There we learned
about the use of Lua in the game World of Warcraft and we could boast having 10 million
Lua users! The 2009 workshop also coincided with the launch of Lua BR, a mailing list
for discussing Lua in Portuguese. The workshop was held again at PUC-Rio in 2023 to
commemorate 30 years of Lua.

The introduction of integers — the biggest change in Lua since version 5.0 — was
discussed in several workshops. In the 2011 workshop, held in Switzerland, we already
discussed the problem of how to represent 64-bit values in Lua. In 2012, at Verisign’s
headquarters in Virginia, the discussion was explicitly about how to introduce integers in
Lua. We presented the different alternatives we had considered and discussed the main
design decisions that later guided the implementation. Finally, in 2014, at the Mail.Ru
headquarters in Moscow, we did a full presentation of how integers were introduced, a
few months before the release of Lua 5.3.

The Lua website hosts information about all those past workshops, as well as
abstracts and slides for most talks presented there [28].

Recognition. The spread of a language is also reflected in various forms of recognition.
In 2009 the book Masterminds of Programming: Conversations with the Creators of
Major Programming Languages [29] included an interview with the Lua team. In
January 2012 Lua won the Front Line Award 2011 from Game Developers Magazine in
the category Programming Tools. Here is the citation:

Lua has become an extremely popular programming language, so much so that it’s
achieved a critical mass of developers in the game industry, meaning Lua skills
are transferable from company to company. That’s partly due to its speed and the
ease with which developers can embed Lua into a game engine. Lua is also highly
extensible – it’s simple to expand its functionality with libraries either written in
Lua, or as extensions in other languages. And it’s relatively small and simple, both
in terms of the source files, and the resultant code and run-time memory usage.

In 2018, the TEX Users Group (TUG) held its annual conference in Rio de Janeiro [30]
with the Lua team as special guests in recognition of the role of Lua in modern TEX en-
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gines. LuaTEX is an extended version of pdfTEX that uses Lua as an embedded scripting
language: It features access to the internals of TEX from Lua. Moreover, large parts
of the TEX engine were replaced by Lua code in LuaTEX. The TEX Live distribution
adopted LuaTEX as a successor to pdfTEX and so LuaTEX is widely distributed along
TEX.

Local recognition is also important. In 2017, Lua featured in the “Inovanças –
Creations Brazilian style” exhibition at the Museum of Tomorrow in Rio. In 2022 the
Lua team received the Pedro Ernesto Medal, the highest decoration given by the city of
Rio de Janeiro.

6. Conclusion

In these 30+ years, Lua has evolved to meet requirements coming from outside,
ones that we had not planned for or even imagined. Our focus on keeping the language
small and its implementation portable has helped us meeting these requirements. Lua
has acquired several modern features without losing its original character. We hope to
continue in this path.

Most changes in the last 15 years can be seen as incremental, several of them
improving non-conventional features introduced in previous versions. This is the case
for the generational collector (Lua 5.2 and 5.4), which is an improvement on the
incremental collector (5.1); ephemeron tables (5.2), which are an improvement on
weak tables (5.0); and yieldable C calls (5.2), which are an improvement on coroutines
(5.0). The introduction of integers, too, can be seen as mostly an incremental change:
Except for the bitwise operators, integers brought remarkably little change in how
programmers use Lua. A few changes can be seen as design fixes, often for features
recently introduced. The lexical scheme for global variables (5.2) can be seen as a fix for
the somewhat unhampered mechanism of function environments from Lua 5.0. Finally,
a few changes brought real novelties to the language, such as to-be-closed variables.
Nonetheless, the changes accumulated in the Lua 5 series have given Lua a stronger
personality, making it a more interesting language.
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